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Abstract. The manner in which the extension of a small wave packet moving in a circular 
orbit in a central potential V(r )  changes with time is examined. It is shown that in general, 
the extension in the orbital plane increases indefinitely at large times unless r V ” -  V’  = 0 
at the radius of the orbit. The question whether there exist any special ‘coherent’ wave 
packets which retain a finite size for arbitrary times in a Coulomb potential is investigated, 
and the answer iS shown to be in the negative. 

1. Introduction 

One of the strange features of quantum mechanics is the spreading of wave packets 
representing particle states (Darwin 1927, Kennard 1927). The indefinite spreading of 
free wave packets, though at an extremely small rate in the case of macroscopic objects, 
has appeared disturbing enough to induce attempts to suppress it through modification 
of the theory. de Broglie (1960), notably, has suggested that the Schrodinger equation 
should be replaced by some nonlinear equation which would preserve the main quantum- 
mechanical structure but inhibit the spread of wave packetst. As an alternative pos- 
sibility, the use of singular solutions§ of the Schrodinger equation has been advocated, 
for describing point particles (Petiau 1954a,b, 1955, de Broglie 1960). There has also 
been an attempt (Karolhazy 1966) to link the problem of the spread of wave packets 
with the curvature of space-time in the general theory of relativity in the hope that this 
curvature would enable particle wave packets to move along definite trajectories 
without unlimited spreading. None of these attempts can be said to have really made 
much headway, and the standard form of quantum mechanics has the allegiance of 
practically all physicistsT[. 

It is surprising however that not much attention has been paid to the study of the 
motion of wave packets in simple realistic systems within the ambit of orthodox theory. 
Besides the free particle, the harmonic oscillator (in one or more dimensions) seems to 

t Present address : BHEL, Hyderabad, India. 
$ For a discussion of the spreading of a ‘classical wave packet’ (ie the group of samples of a statistical ensemble 
around some point in phase space) see Bom and Hooton (1955, 1956), and Bom (1958). 
5 Such solutions have been called ‘the double solutions’. For a discussion of these see de Broglie (1960). 
7 Another aspect of quantum mechanics which has troubled many is the probabilistic nature of its predictions. 
The possibility of accounting for this in terms of deterministic theories with ‘hidden’ variables has been sub- 
jected to experimental test recently (Freedman and Clauser 1972). The results seem to rule out local hidden 
variable theories (see for example Bell 1964). 
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be the only system to have been extensively investigated. I t  has long been recognized 
that the latter, unlike the free particle, has wave-packet states such that the size of the 
packet remains time independent. These are the so-called coherent states which are 
well known in the literature (Schrodinger 1926, Glauber 1963, Sudarshan 1963, 
Carruthers and Nieto 1965) and are characterized by a minimum value for the product 
of the extensions in coordinate and momentum spaces. But even in the case of such 
an important system as a particle in a Coulomb potential, not much seems to be known 
about the behaviour of a small three-dimensional wave packet as time progresses, and 
in particular, as to whether there exist coherent (in the limited sense of non-spreading) 
wave packets in such a potential. 

In view of this situation it seems interesting to investigate the behaviour of wave 
packets bound in spherically symmetric potentials in three dimensions. Our aim is to 
check whether there exist wave-packet states in which the uncertainties in the various 
components of position, momentum etc are time independent. We shall refer to such 
states as coherent states, for brevity, but it must be noted that the standard usage of 
this term in the context of the harmonic oscillator implies much more than the mere 
consistency of the uncertainties. We have pointed out in an earlier paper (Mathews 
and Eswaran 1973) that in the case of the harmonic oscillator there exists a large class 
of states representing wave packets whose mean positions move simple harmonically 
and whose sizes remain time independent but which are not necessarily coherent states 
in the usual sense; we had termed such states as semi-coherent states. I t  is conceivable 
that such states might exist in more general cases too and might show up if one demands 
coherence only in the loose sense of constancy in position and momentum uncertainties. 

The investigation of this question in three-dimensional problems is rendered rather 
complicated by the interlinking of different degrees of freedom through the potential. 
However, when the trajectory of the centre of the packet (ie of the mean position of the 
particle) is circular, the resulting symmetry can be exploited to make the problem 
tractable. Considering the components of position and momentum in the direction 
perpendicular to the plane of the orbit and in the radial and tangential directions, we 
define, in 5 2, the uncertainties in these quantities as well as certain correlations among 
different components. A closed set of coupled equations which determine the temporal 
variation of these uncertainties and correlations is then obtained under the assumption 
that the wave packet has a small size. The general solution of this system of equations 
is presented in 5 3. In § 4 we consider the important case of the Coulomb potential and 
investigate whether there is any choice of the initial form of the wave packet which 
would ensure that the packet remains coherent (without indefinite spreading) for all 
times. It  turns out that no such possibility exists. 

2. Behaviour of a three-dimensional wave packet bound in a spherically symmetric potential 

Let us consider a wave packet representing a particle in a central potential and determine 
how various parameters representing the extension of the wave packet (in the configura- 
tion and momentum spaces) change with time. To avoid non-essential complications 
we shall assume that the mean position moves in a circular orbit of radius R .  Defining 

we observe that for a circular orbit (of radius 14 = R = constant) in which the particle 
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moves with angular velocity w,  

X . P = O ,  ( 2 )  
1 dV 
R dR 

mw’ = - -. P 2  = m’w’R’, 

To take advantage of the symmetry of the orbit we shall consider uncertainties in the 
position and momentum components parallel to X ,  P and X x  P .  In the following, 
these directions will be indicated by subscripts R, T, i respectively (for radial, tangential 
and i directions, the last being chosen perpendicular to the plane of the orbit). With the 
notation 

sx = x - x ,  s p  = p - P ,  (4) 

xR = R - ’ ( ( ~ x .  X)’) (54 

xT = ( m o R ) - ’ ( ( s ~ .  P ) ’ )  (5b) 

we define 

nT = (m’w*R) - ’ ( ( sp .  P ) ’ )  ( 5 e )  

n, = W “ ( @ P , ) ’ ) .  ( 5 f  1 

The factors of mw and R in the above definitions serve to reduce the dimensions of all 
the quantities to (length)’. 

The rates of change of the quantities (5) can be calculated using the quantum equation 
of motion (Messiah 1966). We present here the resulting equations relegating to the 
appendix the details of derivation in a couple of typical cases. For xL and nz we obtain 
the following coupled equations which do not involve any of the quantities referring 
to uncertainties in the orbital plane: 

Here and elsewhere in this paper, dots indicate differentiation with respect to the 
non-dimensional pprameter 

t =wt.  (7) 

The value of V,, ( ~ ’ V / ~ Z ’ ) ~ = ,  is mw’, by equations (A&) and (3). Equations of the 
same form as (6), with V,, replaced by mw2, hold also for a one-dimensional harmonic 
oscillatort. 

As regards zR, zT, zR, nT, which measure the extension in the orbital plane, their 
first derivatives involve also the following cross correlations among the position and 

t Murakhver (1966) obtains the same set of equations for an arbitrary potential in one dimension. Except in 
the case of the harmonic oscillator, the derivation of these equations involves the neglect of third and higher 
order terms in the Taylor expansion of V ( x )  about (x), assuming the smallness of the wave packet. 
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- i R  

i T  

~ R T  

5,  

AT 

~ R T  

~ R R  

~ R T  

momentum components : 

- 0  0 2 0 0  0 1 0 0 0- 

0 0 - 2  0 0  0 0 0 0 1 

- 1  1 0 0 0  0 0 1 1 0  

0 0 0 0 0  2 r]  0 0 0 

0 0 0 0 0 - 2  0 0 0 - 1  

0 0 0 - 1 1  0 0 r ] - 1  0 

211 0 0 2 0  0 0 2 2 0 

0 0 - 1  0 0  1 - 3  0 0 + 
0 0 r] 0 0  1 - '  , 0 0 3  

0 - 2  0 0 2  0 0 - 2 - 2  0 
- 

xRT = ( m o R 2 ) - ' ( ( 6 x .  X)(6x. P)) 

~ L R T  = (m3w3R2) - ' ( (6p .  X) (Sp .  P)) (8b) 

PRR = ( m o R 2 ) - ' ( ( 6 x . X ) ( ~ p . . + ( ( 6 p . X ) ( 6 x . X ) )  (8c)  

PRT = ( m 2 w 2 R 2 ) - ' ( ( 6 x .  X)(Sp.  P)) ( 8 4  

PTT = (m3w3R2) -  ' ((6x. P ) ( 6 p .  P) + (6p . P ) ( 6 x .  P)). 

/+R = (m2w2RZ)-'((6x. P ) ( 6 p .  X))  

(84- 1 

The notation here is as follows : x stands for a correlation between two components of 
6x; n involves two components of Sp; and p is a cross correlation between one com- 
ponent of 6x and one of 6p. The first of the subscripts on p indicates which component 
of 6x is involved, while the second subscript identifies the component of Sp. The operators 
involved in (86) and (8e) are not explicitly symmetrized with respect to SX and Sp but 
do not differ from the symmetrized forms in the case of circular orbits, in view of 
equation (2). 

The equations for the ten coupled quantities, written in matrix form, appear as 
follows : 

XR 

XT 

XRT 

nR 

ZT 

~ R T  

PRR 

PRT 

PTR 

PTT 

or 

U = Mu (9b) 

where M is the matrix and U the column vector appearing on the right of equation (9a). 
The parameter q which appears in M is defined by 

R ao2 

r = R  

the equality of the two forms being a consequence of equation (3). 
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3. Time dependence of the extension of the wave packet 

The manner in which the extension of the wave packet perpendicular to the orbital 
plane varies with time can be seen from equations (6). Their general solution may be 
readily verified to be 

~ , ( r )  = $(x,(O) + ~ ~ ( 0 ) )  +)(zL(O) - n,(O)) cos 25 + &iz(0) sin 25 

nA5) = (X,(O) + n,(O)) - X h ) .  
( 1  l a )  

(1 1b) 

Both xZ and II, have at most a simple harmonic variation, at twice the orbital frequency. 
Initial conditions can in fact be so chosen that x,(O) = ~ ~ ( 0 )  and i , (O) = 0 making 
xZ and II, time independent. 

Consider now equation (9) for the quantities describing extension in the orbital 
plane. The solution of equations of this form can usually be expressed (Gantmacher 
1960) in terms of the eigenvectors di )  and eigenvalues iLi of the matrix M as U = X e”“. 
However the general solution is of this simple type only if M is diagonalizable. In the 
present case it so happens that M is not a diagonalizable matrix (except for r]  = - 1 ) .  
The eigenvalues of M are 

0 (4 times), k(q- 3)’12 (twice), +2(q - 3)1’2. (12) 

If M were diagonalizable, the product ni ( M  -2i), wherein the distinct eigenvalues are 
taken just once each, should vanish. Actual evaluation shows that this product, 
M [ M 2  - ( q  - 3)] [ M 2  -4(q- 3)] ,  is ( r ]  + 1 )  times a nonzero matrix. So M is diagonalizable 
if q = - 1  (corresponding to a harmonic oscillator potential) but not for any other 
value of q. The minimal equation of M for general q turns out to be 

M3[M2-(q-3)I2[M2-4(q-3)] = 0, (13) 

showing that M has only two independent eigenvectors belonging to the eigenvalue 0, 
and only one each belonging to f (q  - 3)’12. This means that the Jordan canonical form 
of M is 

M ,  = SMS- ’  = 

i o +  ‘ 0 1 .  

. . o .  

. .  ’ 0  

. . .  . (q-3)’/2 1 

. . . .  . (q--3)”2 

. . . .  -(r]-3)1’2 1 

. . . .  - ( q -  3)”2 . 

. 2 ( ~ - 3 ) ” *  . 
\ : : : .  - 2(1- 3)’” 
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(all zero elements, except on the main diagonal, are indicated by dots). In this canonical 
representation, our equation (9b) becomes 

i = M,u, U = su. (15) 

The solution of this equation is obtained trivially. By expressing this solution in terms 
of the elementary vectors di )  defined by 

U![) = 6. 1J . ' (16) 

and then replacing the di) by d i )  3 S -  ldi), we obtain the general solution of (9) as 

Here we have written 

(y1-3)''~ = icr and u ( i )  = S -  l u ( i ) .  

Potentials for which q > 3 are of no interest in the present context since they lead to 
exponentially increasing terms in (17). The constants c j  are determined by the initial 
values of the components of u(z)  as 

(19) c j  = Uj(0) = [ S U ( 0 ) l j .  

It may be noted that 
Mu'" = 0,  MU(^) = u ( l )  Mu(3) = u(2)  

9 

= 0 
= iau(5), ~ ~ ( 6 )  = iau(6)+u(7) 

~ u ( 7 )  = -icru(7) 

Mu(9) = 2iau(9) 

~ ~ ( 8 )  = - iau(8) + u ( 7 )  

(20) Mu('0) = -2iau"o). 

These equations are deduced by similarity transformations from the canonical representa- 
tion where equations of identical form evidently hold (with M, and di)  in the place of 
M and di)) .  As already noted, M has only six independent eigenvectors, namely U('), d4) 
(both belonging to the eigenvalue zero), d5) ,  d7) ,  d9) and u(l0). Since M is a real matrix, 
the eigenvectors belonging to complex conjugate eigenvalues are complex conjugates 
of each other. It may thus be seen that 

1 , (21) = u(7) = u(9)* = u(lo) .  

The components of U(.) have to be real, in view of their physical significance, and so 

c: = c7, cg* = cg, c; = c10. (22) 

Explicit expressions for the di) are needed for the discussion of the question whether 
the wave packet can retain a small size for all time. It is not difficult to show that in 
the case of greatest interest, namely the Coulomb potential (q = 2, a = l), the di) 
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defined by (18) and (16) are (up to arbitrary normalization factors) 
u ( l )  

0- 

1 

0 

1 

0 

0 

0 

0 

-1 

0 

u(2) 

0 

0 
1 

- 3  

(J 

0 
1 

-5 
- 2 
3 

0 

0 

3 

u ( 3 )  

2' v 
0 

0 

0 
1 

18  
- 

0 

0 
1 - v  
0 

0 

u(4) 

1 

3 

0 

0 

1 

0 

0 

-1 

-1 

0 

u ( 5 )  

0 '  

2 
- 4, 

1 

0 

- +i 

i 

0 
3 

- 2  

i 

u(9 )  

1 

-4 

2i 

-1 

1 

i 

- 2i 

-1 

2 

- 4i 
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The vectors U('), U('), u(l0) are not shown above, since they are given by (21). 

4. Do non-spreading wave packets exist? 

We are now in a position to address the question whether it is possible to choose initial 
conditions in such a way that the wave packet is initially small and remains small for 
all time. If the size is to remain constant, it is clear that all the coefficients in (17) except 
c 1  and c4 must vanish. If this is not possible we may still ask whether it is possible to 
arrange at least that c2 = c3 = c6 = cg = 0. (If this can be done, the size will not increase 
indefinitely though it will have an oscillatory behaviour.) The answer to these questions 
turns out to be in the negative, however. To see this, let us just consider the constant 
c3 which appears as the coefficient of t2. It can be expressed in terms of the initial 
values of the components of U. In the case of the Coulomb potential (q  = 2), for instance, 
we have 

(24) 

as may be verified by evaluating the right-hand side using (17) and (23). In view of the 
definitions (5) and (8), the quantity in square brackets can be expressed as 

c3 = l8[XR(O) + nT(o) + 2pRT(0)1, 

([dn. XR-'+(mZw2R)- 'dp.  P ] ~ ) ~ = ~ .  (25) 

This is seen to be the expectation value of the square of a hermitian operator. So it can 
vanish (making c3 = 0) only in states $ such that 

(26) [ R - l d x .  X + ( m Z o 2 R ) - ' 6 p .  P]$ = 0. 

However, no such $ can represent a small wave packet, as we shall now see. 

so that 
Let us choose the x axis so as to pass through the mean position at the initial instant, 

X = ( R O ,  01, P = (0, m o R ,  0) at t = 0. (27) 
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Then equation (26) reduces to 

[ ( . X - R ) + ( ~ $ - - R ] ] $  = 0, 

with the general solution 

where f is an arbitrary function of x and 2 .  It is evident that $ merely oscillates, and 
does not fall off in the y direction. Thus there exists no compact wave packet for which 
the term proportional to t2  in (17) is absent. 

I t  is to be noted however that the uncertainties in the radial component of position 
and the tangential component of momentum (xR and zT) do remain constant or vary at 
most periodically. This is because the columns U('), d2) ,  d5) ,  which are the only ones 
appearing with factors oft or tZ  in (17), do not contribute to xR and zT. On the other hand 
dl) and t i 5 )  do contribute to xT, and this quantity increases indefinitely, ie, the wave 
packet, even if it is well defined initially, spreads gradually in the tangential direction. 

The case of central potentials other than the Coulomb potential can be analysed 
similarly, using the vectors d i )  for arbitrary q instead of the special forms (23) valid for 
q = 2. The results in general are similar to those obtained above, except when q = - 1. 
Apart from the isotropic harmonic oscillator potential for which q = - 1 identically, 
other potentials too may have particular values of the radius R at which q has this 
special value; a wave packet in orbit at such a radius would then keep a constant size 
indefinitely (within the approximations based on the smallness of size). In all other 
cases the wave packet must necessarily spread, and the spreading is in the direction 
tangential to the orbit. 
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Appendix 

We indicate here briefly the derivation of equations (9) governing the spreading of a 
wave packet moving in a circular orbit in a central potential V(r) .  The derivation is 
somewhat simplified if expressions for the x, z etc which take into account equations (2) 
and (3) are used from the beginning. For example 

PRR = (moR2)-'XiXj(pixj+xipj), 

etc where the convention of summation over repeated indices is assumed. We also use 
the fact that for a small wave packet in a circular orbit 

dXldt = P/m and dPldt = -(dV/dR)(X/R). 
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The rates of change of x i x j I  p i p j  etc, and hence of their expectation values are obtained 
from the Heisenberg equatlon of motion 

dA 1 a A  
-- - - [ A , H ] + - - .  
dt ih  at  

In the case of xR one obtains then 

moRZiR = X i X j ( x i p j + p i x j )  + ( x i x j ) ( X i P j + P i X j ) .  

In view of (A.l), this reduces to 

which is just the first row of the matrix equation (9). This is exact. 
In the case of nR we obtain, with the aid of (A.2), 

Now we expand V in Taylor series about X(t ) ,  and neglect terms of order higher than the 
second in 6x (assuming that the size of the packet is much less than R). 

where 

1 dV 

We then have, for instance, 

(A.5b) 

(A&) 

This quantity appears contracted with X i X j  in equation (A.4), and in this process, the 
terms proportional to Pj in (A.6) drop out in view of equation (2). So we are left with 

= - x , x j ( x , p j ) m o 2 q .  

Introducing this in (A.4), we obtain 
(A.7) 

which is the fourth row of equation (9). The remaining rows of the equation may be 
obtained in a similar fashion, the approximation (A.5) being used where necessary to 
obtain a closed set of equations. 
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